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The Tevatron begins Run II on March 1, 2001, generating Pp interactions at a collision energy of /s = 1.96 TeV. With an
instantaneous luminosity of 2 x 1032 ¢cm~2s~!, the Tevatron promises to deliver 2 fb~! to the CDF and D@ detectors in the first
two years of running. Both detectors have been upgraded to take full advantage of the higher luminosity conditions. Now the
CDF and D@ collaborations are preparing to perform several B physics studies in Run II. We describe several of the studies aimed
towards constraining the CKM matrix and understanding CP violation, namely, the unitarity angles a, § and -y, and the B; mixing

parameters.
1 Introduction

In the era of ete™ B factories, the Tevatron pp collider
remains a practical and complementary tool for studying
the b quark. Beauty hadrons are copiously produced at
the Tevatron, where the pp — bb interaction cross sec-
tion (see Fig. 11) is predicted to be 150 pbarns at the
Run II collision energy of /s = 2 TeV. Compared to the
ete™ — BB interaction cross section of 1 nanobarn at
the Y (4S5), this represents a large rate of b quark pro-
duction. On the other hand, the backgrounds at the pp
collider are substantially larger than at eTe~ machines.
Furthermore, contrary to the case at eTe™ machines, the
bb partners are only correlated at production, thereafter
hadronizing completely independently into their respec-
tive final states. Finally, another advantage the Teva-
tron has over the eTe™ B factories is that all species of
b hadrons, including the By, B, Bs and B, mesons and
the Ay baryon, are produced and can be studied at the
Tevatron.
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Figure 1: Interaction cross section for pp — bb at the Tevatron 1.

The CDF and D@ collaborations are preparing to
perform several B physics studies in Run II. These in-
clude, but are not limited to, studies associated with CP
violation and the extraction of the CKM angles 8, «
and v, B, mixing and numerous spectroscopy, lifetime,
rare decay and cross section measurements. As shown in
Fig. 22, it is possible to constrain the angles of the unitar-
ity triangle at the Tevatron by performing measurements
of B, mixing and sin(20).
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Figure 2: Existing constraints on the unitarity triangle 2.

2 Run II Detectors

Both the CDF and D@ detectors have undergone major
upgrades to take full advantage of the Tevatron Run IT
environment. In addition to the excellent Run I calorime-
ter 3, DO now has a 2 Tesla solenoidal magnet, a scin-
tillating fiber tracker * and a silicon microstrip vertex
detector ® for improved tracking. Preshower detectors %
enhance electromagnetic shower identification capabili-
ties in the central and forward regions. The extensive
muon system has been upgraded to improve the spatial
resolution and allows reduced trigger thresholds. The
new DO trigger system includes a central track trigger
at Level 1. In addition, one year into Run II, a Level 2
impact parameter trigger ” will be installed.



The upgraded CDF detector has a five-layer silicon
vertex detector 8, layer 00 silicon installed on the beam
pipe, and intermediate silicon layers® inside the new cen-
tral outer tracker '°. A time-of-flight !! detector and a
new EM plug calorimeter improve the particle identifica-
tion capabilities. The new CDF trigger system includes a
pipe-lined central track trigger at Level 112 and a Level 2
impact parameter trigger '*. These improvements make
a two-track hadronic trigger possible at Level 2.

3 CP Violation

One of the most interesting properties of the neutral
B mesons is mixing, where the particle spontaneously
changes into its antiparticle. In the B system, the direct
and mixed decays yield the same CP eigenstate at differ-
ent rates. This CP asymmetry can be measured and is
directly related to the angle 8 of the unitarity triangle.
At the Tevatron, the time-dependent CP asymmetry,
Acp, is measured using B® — J/9K? decays, where

=0
Aop(t) = (B — J/YK®) —T(B® = J/¢YKP) "

T(B° = J/YKO) + T(B° - J/YK°)
= sin(20) sin(Amgt) . (2)

The J/¢ — €Y¢~ signature is used for the trigger and
the K0 — 7F7~ decay is reconstructed by looking for
opposite-sign tracks in the vicinity of the J/1 candidate.
Mass constraints on the J/t¢ and K? candidates are im-
posed simultaneously with the vertex and pointing con-
straints.

The charge correlation between the “same-side” b
quark and a nearby pion from fragmentation or B** de-
cay can sometimes be exploited to determine the flavour
of the B® meson at the time of production. In other cas-
es, the production flavour is determined from the flavour
of the other b quark produced in the pp interaction. This
“opposite-side tag” is obtained from the charge of the
lepton from the b-quark semileptonic decay, or from the
pr-weighted net charge of the particles in the b jet.

The quality of the flavour tag is given by eD?, where
€ is the tagging efficiency and D = 2P — 1 is the dilution,
related to the probability P that a tag gives the correct
flavour. In Run I, CDF calibrated the tagging efficiencies
using B* — J/9K?* decays'®, where the charge of the
kaon defines the flavour. These results were extrapolated
by both experiments to reflect the conditions expected in
Run II. Table 1 shows the predicted tagging efficiencies
for both CDF and D@.

Using 110 pb~! of pp collisions collected in Run I,
CDF determined the result sin(23) = 0.79794} (stat +
syst) 15 (see Fig. 3).

Table 1: Predicted tagging qualities for CDF and D@ in Run II.

eD? (%)
Tag Run I measured | Run II expected
CDF CDF DO
Same side 1.8+0.4+0.3 2.0 2.0
Soft lepton 0.9+0.1+0.1 1.7 31
Jet charge 0.8+0.1+£0.1 3.0 4.7
Opp. side K 2.4 none
Combined 9.1 9.8
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Figure 3: Agp versus decay length for B® — J/¢K? events mea-
sured by CDF in Run I 15,

The resolution on the measurement of sin(20) is giv-
en by
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Here, I and 4 = Amgy/T are the decay width and mixing
parameter, respectively, of the B® meson, oy is the prop-
er time measurement resolution (expected to be about
90 fs), N is the number of events and S/B is the sig-
nal to background ratio (which is expected to be about
0.75 at DO for example). With 2 fb~! of integrated
luminosity, CDF expects to reconstruct 30 000 decays
in the J/¢p — ptp~ channel and 12 000 decays in the
J/1 — ete” channel. D@ expects 40 000 decays in
the J/v — ptp~ channel and 30 000 decays in the
J/1 — eTe~ channel. These expectations yield a predic-
tion for the final resolution on sin(203) of 0.04, to be mea-




sured by CDF using 2 fb~! of pp collisions and o (sin(24))
of 0.03, to be measured by D@, with the same integrat-
ed luminosity. This improved resolution is a result of
the increased muon acceptance and lower muon trigger
thresholds, improved flavour tagging and forward track-
ing, in the case of D@. This result continues to be s-
tatistics limited due to the size of the tagging calibration
samples.

4 « and v in B, Decays

When the decay B® — 7nt7~ was thought to be domi-
nated by tree-level diagrams, it was the prime candidate
for measuring sin(2«a) from its CP asymmetry. Despite
the low branching fraction of order 10~5 and large back-
grounds (mostly heavy flavour daughters), CDF expects
to reconstruct 5000 such events, using its all-hadronic
trigger. D@ has no such capability, but can trigger on
the opposite-side lepton, thereby collecting 500 events in
2 fb~!. Unfortunately, it is now clear that this decay is
complicated by penguin contributions, making the Acp
difficult to extract from this mode alone.

Using the prescription described in Ref. 12, the an-
gles, a and v, of the unitarity triangle can be determined
in a single measurement. The four decays, B® — w7,
B - Ktn=, BY - 7t K~ and B? - KtK~ are re-
constructed simultaneously. The decays are expected to
be produced in the ratios 1:4:0.5:2. Without significant
K /7 separation capability at DO, only fits to the mass-
es and decay times can be used to separate these decays
from each other. To illustrate this point, Fig. 4 shows
the predicted invariant mass distributions at D@ for By
candidates from these four decay channels, where the pi-
on mass is assigned to both daughter tracks. On the
other hand, although the CDF Time-of-Flight detector
only provides substantial K/ separation for momenta
up to p = 1.6 GeV/c, too low for the daughter tracks of
these two-body decays, the CDF dE/dx information does
allow a 1-0 K /7 separation in this regime. This helps to
distinguish the B® — nt7n~ and BY - KtK~ decays,
which otherwise have the least invariant mass separation
of the four channels.

Although the mass distributions cannot be easily
distinguished, these decay channels have different os-
cillation frequencies. Therefore, a likelihood fit can be
performed to the observed Acp distribution. Five ob-
servables appear in the fit: AL (7)), AL (KTK ™),
Amie(rta—), AB@(K+TK ™), and sin(23). CDF predicts
a measurement of v with resolution o(y) =153 +3 de-
grees. The resolution of such a measurement at D@ is
still under study.
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Figure 4: Expected m7 invariant mass distribution for B® and B?
candidates in 2 fb~! at D@ where the pion mass has been assigned
to the two daughter tracks. The shaded areas each represent a
decay channel. The points represent the sum of all channels.

5 B, Mixing

The unitarity triangle can also be constrained by studies
of B? mixing, physics not accessible to the ete™ B fac-
tories running at the Y(4S5). With 2 fb=1 of pp collisions,
both CDF and D@ expect to reconstruct about 40 000
B? semileptonic decays, which can be used to probe val-
ues of the mixing parameter Am; up to about 20 ps~?.
CDF performed such a study in Run I with 110 pb!
of pp collisions and measured Am, > 5.8 ps—! at 95%
confidence level *¢ (see Fig. 5).

If the value of Am; turns out to be large, the reso-
lution in the semileptonic mode will be insufficient, due
to the momentum uncertainty of the missing neutrino.
However, larger values of Am, can be studied in the
BY - D, at(r nt) decay channel. The D, meson is
reconstructed in the ¢ decay mode, where ¢ — KTK~.
CDF uses the two-track hadronic trigger and tags the
initial flavour by the opposite-side event. In addition to
the tags used in the B® — J/9K? reconstruction, CDF
can also use the charge-correlation of the opposite-side
fragmentation kaon, a direct benefit of CDF’s particle-
ID capability. The final flavour is tagged by the charge
of the D; meson. CDF expects to reconstruct between
5000 and 30 000 decays in 2 fb~! and can probe values
up to Am, = 40 ps—'. In the absence of a fully-hadronic
trigger, DO triggers on the opposite-side lepton and uses
the lepton charge to tag the initial flavour. Between 400
and 1200 reconstucted events are expected at DO and
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Figure 5: The Bg oscillation amplitude as a function of Amg mea-
sured by CDF in Run I. The points represent the data. The lines
represent the predictions at 95% CL, where the solid line includes
statistical and systematic uncertainties and the dot-dashed line in-
cludes statistical uncertainties only!S.

1

values up to Amg = 22 ps~* can be studied.

6 Tevatron Run IT Schedule

The Tevatron Run II begins on March 1, 2001. The
Fermilab directorate has promised no long shutdowns
throughout the duration of the run. The beams divi-
sion expects a gradual luminosity improvement over time,
reaching the design luminosity of 2.0 x 1032 cm =25~ by
2004. The Tevatron will start with a 396 ns bunch spac-
ing, reduced to 132 ns in 2003. Both CDF and D@ hope
to accumulate 15 fb~1 of pp collisions by 2008, at which
point the BTeV experiment will become the focus of the
Tevatron program.

7 Conclusion

The prospects for successful B physics studies in Run IT
at the Tevatron are excellent. With competitive measure-
ments of quantities such as sin(23), v and Amy, the CDF
and D@ experiments will continue to make valuable con-
tributions to the B physics program with the large data
samples available in the just the first two years of Run II
at the Tevatron.
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